Harmonic maps from degenerating Riemann surfaces

نویسنده

  • Miaomiao Zhu
چکیده

We study harmonic maps from degenerating Riemann surfaces with uniformly bounded energy and show the so-called generalized energy identity. We find conditions that are both necessary and sufficient for the compactness in W 1,2 and C modulo bubbles of sequences of such maps. 2000 Mathematics Subject Classification: 58E20

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dirac-harmonic maps from degenerating spin surfaces I: the Neveu-Schwarz case

We study Dirac-harmonic maps from degenerating spin surfaces with uniformly bounded energy and show the so-called generalized energy identity in the case that the domain converges to a spin surface with only Neveu-Schwarz type nodes. We find condition that is both necessary and sufficient for the W 1,2 ×L modulo bubbles compactness of a sequence of such maps. 2000 Mathematics Subject Classifica...

متن کامل

Mathematik in den Naturwissenschaften Leipzig Dirac - harmonic maps from degenerating spin surfaces I : the Neveu - Schwarz case

We study Dirac-harmonic maps from degenerating spin surfaces with uniformly bounded energy and show the so-called generalized energy identity in the case that the domain converges to a spin surface with only Neveu-Schwarz type nodes. We find condition that is both necessary and sufficient for the W 1,2 ×L modulo bubbles compactness of a sequence of such maps. 2000 Mathematics Subject Classifica...

متن کامل

Hopf Differentials and the Images of Harmonic Maps

In [Hz], Heinz proved that there is no harmonic diffeomorphism from the unit disk D onto the complex plane C. The result was generalized by Schoen [S] and he proved that there is no harmonic diffeomorphism from the unit disk onto a complete surface of nonnegative curvature. Unlike conformal or quasi-conformal maps between Riemann surfaces, the inverse of a harmonic map is not harmonic in genera...

متن کامل

Harmonic Morphisms and Hyperelliptic Graphs

We study harmonic morphisms of graphs as a natural discrete analogue of holomorphic maps between Riemann surfaces. We formulate a graph-theoretic analogue of the classical RiemannHurwitz formula, study the functorial maps on Jacobians and harmonic 1-forms induced by a harmonic morphism, and present a discrete analogue of the canonical map from a Riemann surface to projective space. We also disc...

متن کامل

On Quasiconformal Harmonic Maps between Surfaces

It is proved the following theorem, if w is a quasiconformal harmonic mappings between two Riemann surfaces with smooth boundary and aproximate analytic metric, then w is a quasi-isometry with respect to Euclidean metric.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008