Harmonic maps from degenerating Riemann surfaces
نویسنده
چکیده
We study harmonic maps from degenerating Riemann surfaces with uniformly bounded energy and show the so-called generalized energy identity. We find conditions that are both necessary and sufficient for the compactness in W 1,2 and C modulo bubbles of sequences of such maps. 2000 Mathematics Subject Classification: 58E20
منابع مشابه
Dirac-harmonic maps from degenerating spin surfaces I: the Neveu-Schwarz case
We study Dirac-harmonic maps from degenerating spin surfaces with uniformly bounded energy and show the so-called generalized energy identity in the case that the domain converges to a spin surface with only Neveu-Schwarz type nodes. We find condition that is both necessary and sufficient for the W 1,2 ×L modulo bubbles compactness of a sequence of such maps. 2000 Mathematics Subject Classifica...
متن کاملMathematik in den Naturwissenschaften Leipzig Dirac - harmonic maps from degenerating spin surfaces I : the Neveu - Schwarz case
We study Dirac-harmonic maps from degenerating spin surfaces with uniformly bounded energy and show the so-called generalized energy identity in the case that the domain converges to a spin surface with only Neveu-Schwarz type nodes. We find condition that is both necessary and sufficient for the W 1,2 ×L modulo bubbles compactness of a sequence of such maps. 2000 Mathematics Subject Classifica...
متن کاملHopf Differentials and the Images of Harmonic Maps
In [Hz], Heinz proved that there is no harmonic diffeomorphism from the unit disk D onto the complex plane C. The result was generalized by Schoen [S] and he proved that there is no harmonic diffeomorphism from the unit disk onto a complete surface of nonnegative curvature. Unlike conformal or quasi-conformal maps between Riemann surfaces, the inverse of a harmonic map is not harmonic in genera...
متن کاملHarmonic Morphisms and Hyperelliptic Graphs
We study harmonic morphisms of graphs as a natural discrete analogue of holomorphic maps between Riemann surfaces. We formulate a graph-theoretic analogue of the classical RiemannHurwitz formula, study the functorial maps on Jacobians and harmonic 1-forms induced by a harmonic morphism, and present a discrete analogue of the canonical map from a Riemann surface to projective space. We also disc...
متن کاملOn Quasiconformal Harmonic Maps between Surfaces
It is proved the following theorem, if w is a quasiconformal harmonic mappings between two Riemann surfaces with smooth boundary and aproximate analytic metric, then w is a quasi-isometry with respect to Euclidean metric.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008